

1st Gulf Coast Symposium Omni Royal Hotel New Orleans, Louisiana October 15, 2022

State of the Art in Drug and Disease Monitoring

Which is TRUE regarding HLA-DQA1*05 allele in IBD

- A. Present in 40% Caucasian patients
- B. Associated with presence of anti-TNF drug antibody
- C. Associated with anti-TNF therapy discontinuation
- D. All of the above

Which is TRUE regarding therapeutic drug monitoring

- A. Antibodies to Infliximab cross react with Adalimumab
- B. High BMI is associated with increased anti-TNF clearance
- C. Combination therapy is associated with higher rates of anti-drug antibody
- D. High CRP is associated with decreased clearance of biologics

Clinical Case 4

Patient with CD on infliximab 5 mg/kg due to prior disease breakthrough. Recent colonoscopy shows deep remission. Trough is 2.1 mcg/mL with low antibody titer detected. You are considering the next steps

State of the Art in Drug and Disease Monitoring

Anita Afzali MD, MPH, MHCM

Professor of Medicine Executive Vice Chair, Department of Medicine Associate Chief Medical Officer, UC Health University of Cincinnati

Disclosures

Anita Afzali, MD, MPH, MHCM – Planner/Moderator/Course Director/Presenter Research Ed Support – AbbVie, Janssen, Takeda, BMS, Pfizer Advisory Board – Gilead, TLL Pharma, AbbVie, Janssen, Takeda, BMS, Pfizer Consultant – Gilead, DiaSorin, Arena, AbbVie, Janssen, Takeda, BMS, Pfizer Board Member and Co-Founder – IBD Horizons, Scrubs & Heels

Why Do We Need to Understand Therapeutic Drug Monitoring?

- To improve management of our patients with IBD
- To understand the heterogeneity of drug and patient characteristics which results in variation in drug
 - o Delivery,
 - o Metabolism,
 - \circ Efficacy
 - Safety
- To provide insight into primary and secondary non-response
- To assist in treatment selection for each individual patient

Factors Impacting Pharmacokinetics

	Drug Clearance		ADA Formation	
Gender (male)				
BMI (high)				
Albumin concentration (low)				
Baseline CRP* concentration (high)				
Baseline TNF concentration (high)				
Concomitant immunomodulator use				
Presence of antidrug antibodies (ADAs)				
Deep ulcerations on endoscopy				

Fecal Loss of IFX Resulting in Lack of Response

- Does fecal loss of IFX contribute to failure to respond to induction therapy in severe colitis?
- Fecal samples collected within 14d following IFX 5mg/kg, n=30
- Non-responders (compared to responders) to IFX:
 Higher fecal IFX conc at day 1 (p=0.02)
 Lower serum IFX conc day 14 (p=0.03)

IBDH

Principles of Therapeutic Drug Monitoring in IBD

We CAN Assess Drug or Metabolites:

- Thiopurines
- Biologics
 - Anti-TNF therapy
 - Vedolizumab
 - Ustekinumab

We DO NOT Assess Drug or Metabolites:

- Methotrexate
- \circ 5-ASA
- $_{\odot}$ JAK inhibitors
- S1P receptor modulators

REACTIVE

- Most common approach
- Await a bad occurrence (classically LOR) then attempt to fix it

PROACTIVE

 Preemptively change drug dosing prior to onset of bad occurrence to prevent a LOR

Commercially Available Drug Assays

Туре	Methods	Drug Assays Available		
Prometheus (Anser) ¹	Can measure drug concentration and antibody level simultaneously (drug tolerant assay)	IFX, ADA, CZP, VEDO, UST		
ARUP Labs ²	Test measures bioactivity using reported cells Method - Cell culture / Stimulated cell function assay / Chemiluminescent immunoassay, quantitative and semi-quantitative	IFX, ADA		
Mayo Medical Laboratories ³	Liquid Chromatography/Mass Spectrometry (LC/MS)	IFX, ADA, CZP, VEDO		
Inform Diagnostics ⁴	ELISA: Can measure drug concentration and antibody level	IFX, ADA, CZP, GOL, VEDO, UST		
Esoterix (Labcorp) ⁵	Electrochemiluminescence Assay (note different units of results for antibody titers – ng/mL)	IFX, ADA, CZP, GOL, VEDO, UST		

https://www.prometheuslabs.com/anser/about-the-tests/
 http://www.aruplab.com/
 https://www.mayocliniclabs.com/index.html
 http://www.informdx.com/
 http://www.esoterix.com

Phases of Therapeutic Drug Monitoring

Treatment Selection

Prediction of Ongoing Response

Assessment of Loss of Response

Phases of Therapeutic Drug Monitoring

Prediction of Ongoing Response

Assessment of Loss of Response

Pre-Treatment Considerations Related to TDM: Thiopurines

TPMT

Frequency	Enzyme Activity	Allele
89%	Normal to High	TPMT ^H /TPMT ^H
11%	Intermediate	TPMT ^H /TPMT ^L
0.33%	Low to Absent	TPMT ^L /TPMT ^L

Beaugerie L, et al. Lancet. 2009;374(9701):1617-25.

NUDT15

p.Arg139Cys Allele Frequency

Chinese: 13% Koreans: 10.4% Japanese: 7% Mixed American: 2%

Recommended:

 TPMT testing prior to dosing thiopurines for IBD

Suggested:

• NUDT15 testing in some individuals

Practical guidance:

• Early CBC (1-2 weeks) prior to dose increase of thiopurine

IBD

Yang SK, et al. Nat Genet. 2014 Sept;46(9): 1017–1020.

Pre-Treatment Considerations Related to TDM: Can we predict immunogenicity to Anti-TNF?

HLA-DQA1*05 Carriage Associated With Immunogenicity to Infliximab and Adalimumab

- N = 1240
- Biologic-naïve CD patients starting infliximab or adalimumab
- Genome wide study
- HLA-DQA1*05 allele, significantly increased the rate of immunogenicity

(HR 1.90; 95%CI 1.60-2.25)

Dotted lines: anti-TNF monotherapy **Solid** lines: combination therapy with immunomodulators **Red**: carriers of the HLA-DQA1*05 allele (1 or 2 copies) **Blue**: non-carriers

IBDH

Unanswered Questions: Immunogenicity to Anti-TNFs

- Did your patient already develop anti-drug antibodies (ADA) on a prior anti-TNF?
- Related to HLA DQ1*05:
 - **o If negative: would you use monotherapy with anti-TNF?**
 - **o If positive: would you not consider proactive TDM or stopping IMM?**

Recommended:

 If prior ADAs to anti-TNF, and going to second anti-TNF use combination therapy and/or proactive TDM

Consider:

• HLA DQ1*05 testing in the future (?)

Combination Therapy with Anti-TNF is better Than Monotherapy

1. Colombel JF, et al. *N Engl J Med*. 2010;362(15):1383-95. 2. Panaccione R, et al. *Gastroenterol*. 2014;146(2):392-400.

Combination Therapy NOT Always Necessary

- SONIC post-hoc: infliximab levels more important than combination therapy^{1,2}
- Ustekinumab does NOT benefit from combination therapy^{3,7}
- Vedolizumab does NOT benefit from combination therapy⁴⁻⁷
- 5-ASA not helpful when escalating to advanced therapies⁸⁻⁹ (nor cost-effective)¹⁰

Recommended:

- Monotherapy of vedolizumab and ustekinumab
- Stopping 5-ASA after treatment escalation in UC (and CD) Possible in the future:
- Optimized monotherapy of anti-TNF to avoid IMM use

10. Shaffer S, et al. Am J Gastroenterol. 2021; 116:125-133.

Phases of Therapeutic Drug Monitoring

Treatment Selection

Prediction of Ongoing Response

Assessment of Loss of Response

- Proactive TDM
- Helps prevent risk of relapse
- Reduces risk of hospitalizations and surgery

Infliximab Levels Associated with Specific Outcomes of Interest

Proactive Monitoring to Optimize IFX Maintenance and Durability

- Single physician, retrospective cohort study of pts in clinical remission
- Optimized IFX dose to trough (5-10µg/mL) n=48
- No dose optimization n=78
- Conclusion: Dose optimization probability to remain on IFX in 5 years

Randomized Prospective Trials of TDM Infliximab in IBD

DIS1: dose increases (2 maximum) in steps of 2.5 mg/kg based on clinical symptoms and biomarker analysis and/or serum infliximab concentrations

DIS2: dose increase from 5 to 10 mg/kg based on the same criteria; CONTROL: dose increase to 10 mg/kg based on clinical symptoms alone

Evolution of Therapeutic Drug Monitoring for Anti-TNF Therapies

Treatment Selection

Prediction of Ongoing Response

Assessment of Loss of Response

- Primary/Secondary non-response
- Reactive TDM

Proposed Approach to Therapeutic Drug Monitoring with Anti-TNFs

Suggested Target Trough Concentrations Reactive TDM

Immunogenicity and Combination Therapy

Immunomodulators Decrease Risk of immunogenicity: IFX or ADL Thiopurines or Methotrexate both work well

Kennedy et al Lancet Gastro 2019.

Evolution of ADAs by HLA DQA1*05 Genotype & IMM Use

(ADA titre ≥10AU/ml at any time)

- O copies of DQA1*05, immunosuppressants on Visit 1
- •••••• 0 copies of DQA1*05, no immunosuppressants on Visit 1
- ≥1 copy of DQA1*05, immunosuppressants on Visit 1
- $\sim \geq 1$ copy of DQA1*05, no immunosuppressants on Visit 1

Sarkoz et al Gastro 2019.

Patients at Risk for Anti-Drug Antibodies and Role for Combination IMM

- Patient receiving episodic therapy
 - \circ Intentional
 - Unintentional: break in therapy due to coverage issues or complication
- "Pseudo-episodic therapy"
 - Sub-therapeutic serum drug levels
 - Patient with high drug clearance between doses
- Patient who developed anti-drug antibodies previously
- High BMI, Smoking
- HLA DQA1*05

Recommendation:

- For anti-TNF only
- This is not helpful if there is no drug detectable!
- Remember to follow-up with additional levels to show that your approach worked

Proactively Monitor Disease and Reactively TDM

Subclinical Relapse (the asymptomatic patient) and Inform TDM

Summary: Drug and Disease Monitoring

- TPMT, NUDT15 prior to thiopurines
- Role of HLA DQ1*05 evolving
- REactive drug monitoring is helpful with anti-TNF, the downside is waiting until the drug has failed the patient and patient is symptomatic
- PROactive drug monitoring, prospective randomized data for anti-TNF overall do not support this approach, but makes sense for some high-risk patients
- Vedolizumab and ustekinumab have low immunogenicity and no proven benefit of combination therapy or established need for serum concentration measurements
- Monitor disease Proactively, test drug levels Reactively for TDM
 - Can detect subclinical relapse or lack of response and then consider reactive TDM and dose optimization

IBDHorizons

Panel Discussion Moderator: Anita Afzali, MD Gary Lichtenstein, M.D. Bincy Abraham, MD Brian Feagan, MD Casey Chapman, M.D.

Clinical Case 4

Patient with CD on infliximab 5 mg/kg due to prior disease breakthrough. Recent colonoscopy shows deep remission. Trough is 2.1 mcg/mL with low antibody titer detected. You are considering the next steps

Which is TRUE regarding HLA-DQA1*05 allele in IBD

- A. Present in 40% Caucasian patients
- B. Associated with presence of anti-TNF drug antibody
- C. Associated with anti-TNF therapy discontinuation
- D. All of the above

Which is TRUE regarding HLA-DQA1*05 allele in IBD

- A. Present in 40% Caucasian patients
- B. Associated with presence of anti-TNF drug antibody
- C. Associated with anti-TNF therapy discontinuation
- D. All of the above

Which is TRUE regarding therapeutic drug monitoring

- A. Antibodies to Infliximab cross react with Adalimumab
- B. High BMI is associated with increased anti-TNF clearance
- C. Combination therapy is associated with higher rates of anti-drug antibody
- D. High CRP is associated with decreased clearance of biologics

Which is TRUE regarding therapeutic drug monitoring

- A. Antibodies to Infliximab cross react with Adalimumab
- B. High BMI is associated with increased anti-TNF clearance
- C. Combination therapy is associated with higher rates of anti-drug antibody
- D. High CRP is associated with decreased clearance of biologics

1st Gulf Coast Symposium Omni Royal Hotel New Orleans, Louisianna October 15, 2022